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WHAT IS ULTRASOUND CONTRAST AGENTS ?

Gas bubbles in fluid gives strong echoes due to 
the large difference in acoustic impedance 
b t  th  fl id d th   Th  b bbl ’  between the fluid and the gas. The bubble’s 
ability to oscillate at resonant frequency further 
increase the signalincrease the signal

 Example: Shake saline and inject into blood. 
Gives a nice opacification of the right side of the Gives a nice opacification of the right side of the 
heart. 

 Problem: Free air bubbles does not pass the  Problem: Free air bubbles does not pass the 
lungs, and the contrast effect is very short. Gas 
bubbles dissolve in bloodbubbles dissolve in blood.



IMPROVEMENT

• Stabilize the gas bubble by encapsulating 
it in thin shell to give a lasting gas bubble 

ff teffect

• Size must be small enough to pass capillary 
l  T i l di t   (R d bl d vessels. Typical diameter 2-5um. (Red blood 

cells ~7 um)

Th  h ll  b   h   h  • The shell must be strong enough to get the 
particle through the lungs

M  f  b   i• Must of course be non toxic.



ULTRASOUND CONTRAST APPLICATIONS
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EXAMPLE ON LEFT VENTRICULAR

OPACIFICATION (LVO)

2nd Harmonic Imaging Contrast Imaging – LVO 

Myocardial wall motion is difficult to assess in 
 30% of the patients despite 2 harmonic imaging !~ 30% of the patients – despite 2.harmonic imaging !



CONTRAST AGENT IMAGING

b d ll f ll d b bbl Is based on exciting small gas-filled microbubbles 
by an ultrasonic pulse, and receiving the sound 
radiated from these microbubblesradiated from these microbubbles.

 Is highly nonlinear
 Harmonics Harmonics

 Differences between positive and negative pressure half-
cycles

 Sub-harmonics

 etc.

 Enlighten the Tissue Harmonic Imaging



DETECTION TECHNIQUES

H i  i i  ( d  thi d  bh i ) Harmonic imaging (second, third, subharmonic)

 Power Doppler Power Doppler

 Harmonic Power Doppler Harmonic Power Doppler

 Pulse Inversion Pulse Inversion

 Pulse Inversion Angio Pulse Inversion Angio

 Power Modulation (Amplitude Modulation) ( p )



PULSE INVERSION (PHASE INVERSION)

h Tx: transmitting two 
pulses p1 and p2 , 
where: p = p

 Rx: summing the two 
echoes: epi = e1 + e2

where: p2 = -p1

Linear:

e2   - e1 epi  0

i

2  1 pi

Non-Linear:

e2   - e1 epi  02  1 pi



EXAMPLE ON PULSE INVERSION IMAGING

Fundamental
Second 

Harmonic
Pulse

InversionFundamental Harmonic Inversion



PULSE INVERSION IMAGING

d Advantages:
 Better Contrast/Tissue

Wid b d  B tt  l ti Wide-band -> Better resolution

 Also picking up contrast in motion

 Disadvantages:
 Two pulses > reduced frame rate Two pulses -> reduced frame rate

 Tissue motion artifacts



h l d d d f h

MMECHANICALECHANICAL IINDEXNDEX

 Mechanical Index is a standard measure of the 
acoustic output in a diagnostic ultrasound system, 
defined as:defined as:

݊݁݃

 Ex:
෠ܲ ൌ 1 0 ݊ܲܽܲܯ ݁݃ 1.0 ܽܲܯ

F = 1.0 MHz
MI = 1.0



RRESPONSEESPONSE OFOF BUBBLESBUBBLES TOTO ULTRASOUNDULTRASOUND
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BUBBLE MODELS

l h l Rayleigh-Plesset equation
 Describe a bubble in an incompressible liquid

N  d i  f  d di ti No damping from sound radiation

 Rayleigh-Plesset with radiation damping: Trilling 
and Keller modelsand Keller models
 Includes liquid compressibility in the acoustic Mach-

number M

 Computational unstable for high Mach-numbers 
(negative inertia term)

il ’ d l Gilmore’s model
 For large amplitude bubble oscillations



SHELL MODELS

 For most contrast agents  the shell has major influence  For most contrast agents, the shell has major influence 
on the acoustic properties of the microbubbles and in 
general, it

Makes the bubble stiffer than a free gas bubble Makes the bubble stiffer than a free gas bubble
 Higher resonance frequency
 Limited oscillation amplitude

 Makes the bubble more viscous Makes the bubble more viscous
 More absorption
 Low scatter to attenuation ratio

 Church presented a non-linear theoretical model for  Church presented a non linear theoretical model for 
shell-encapsulated bubbles in 1995 which is the basis of 
BubbleSim.
 Does not give information about the nonlinear stress-strain  Does not give information about the nonlinear stress strain 

relationship of the shell
 Nonlinear ad hoc model added exponential stress-strain 

relationship for the shellrelationship for the shell
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COMPROMISED MODEL

bbl d l Bubble model
 Start from R-P model with damping term from Trilling 

and Keller modelsand Keller models

 Omit the correction terms of first-order in the Mach-
number

 Avoid the unphysical negative inertia and associated 
numerical instability problem

I   t  i l t i  t d d i l ft   Is easy to implement using standard numerical software 
packages

 Shell model Shell model
 Modeled by using Church’s visco-elastic model, with the 

exponential stress-strain relationship proposed by 
Angelsen et al.



BUBBLE RESPONSE

h l d ( ) The particle radius a(t) is

and radial oscillation

is the Fourier Transform of x(t)

 At certain frequency, x(ω) is proportional to pi(ω)

 At fixed pi(ω), x(ω) is a bandpass function with 
resonant frequency of (ω0/2π).

 δ is the damping constant, represent the 
attenuation of the sound



SCATTERING CROSS SECTION (SCS)

h d l SCS in the model
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BUBBLESIM INTERFACE

Parameter setup panel Result display



DEMO …

 Low MI

 Resonance
 Linear resonate frequency:

 High MI



LOW MI
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MEDIUM MI
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RESONATE
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HIGH MI
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