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WHAT IS ULTRASOUND CONTRAST AGENTS ?

o Gas bubbles in fluid gives strong echoes due to
the large difference in acoustic impedance
between the fluid and the gas. The bubble’s
ability to oscillate at resonant frequency further
increase the signal

o Example: Shake saline and inject into blood.

Gives a nice opacification of the right side of the
heart.

o Problem: Free air bubbles does not pass the

lungs, and the contrast effect is very short. Gas
bubbles dissolve in blood.




IMPROVEMENT

. Stabilize the gas bubble by encapsulating
it in thin shell to give a lasting gas bubble
effect

. Size must be small enough to pass capillary
vessels. Typical diameter 2-5um. (Red blood
cells ~7 um)

- The shell must be strong enough to get the
particle through the lungs

. Must of course be non toxic.




ULTRASOUND CONTRAST APPLICATIONS
EBD/LVO &
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Deep
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EXAMPLE ON LEFT VENTRICULAR
OPACIFICATION (LVO)

2nd Harmonic Imaging Contrast Imaging — LVVO

001/10/30-09:30:22 " 2001/10/30-09:56:49

Myocardial wall motion is difficult to assess in
~ 30% of the patients — despite 2.harmonic imaging ! ‘




CONTRAST AGENT IMAGING

o Is based on exciting small gas-filled microbubbles
by an ultrasonic pulse, and receiving the sound
radiated from these microbubbles.

o Is highly nonlinear
« Harmonics

» Differences between positive and negative pressure half-
cycles

o Sub-harmonics
e etc.

o Enlighten the Tissue Harmonic Imaging




DETECTION TECHNIQUES

o Harmonic imaging (second, third, subharmonic)
o Power Doppler

o Harmonic Power Doppler

o Pulse Inversion

o Pulse Inversion Angio

o Power Modulation (Amplitude Modulation) ‘




PULSE INVERSION (PHASE INVERSION)

o TX: transmitting two o RX: summing the two
pulses p, and p,, echoes: e ; = ¢, +e,
where: p, = -p,

Linear: —/\/\/\AM -
Non-Linear: W/M —‘/\I\N\/\-_A'_

e, # - € e;# O




EXAMPLE ON PULSE INVERSION IMAGING

Second Pulse
Fundamental Harmonic Inversion




PULSE INVERSION IMAGING

o Advantages:
o Better Contrast/Tissue
» Wide-band -> Better resolution
 Also picking up contrast in motion

o Disadvantages:
» Two pulses -> reduced frame rate
» Tissue motion artifacts




MECHANICAL INDEX

o Mechanical Index is a standard measure of the
acoustic output in a diagnostic ultrasound system,
defined as:

I - Pneg (MPa)
JFreq(MHz)

o Ex: ~
By = 1.0 MPa

F=1.0MHz

MI =1.0




RESPONSE OF BUBBLES TO ULTRASOUND

high Bubble destruction
MI

medium » Nonlinear oscillation
MI

Mechanical
Index (MI)

low MI » Linear oscillation‘
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BUBBLE MODELS

o Rayleigh-Plesset equation
o Describe a bubble in an incompressible liquid
» No damping from sound radiation
o Rayleigh-Plesset with radiation damping: Trilling
and Keller models

 Includes liquid compressibility in the acoustic Mach-
number M

» Computational unstable for high Mach-numbers
(negative inertia term)

o Gilmore’s model
» For large amplitude bubble oscillations




SHELL MODELS

o For most contrast agents, the shell has major influence
on the acoustic properties of the microbubbles and in
general, it

» Makes the bubble stiffer than a free gas bubble
o Higher resonance frequency
o Limited oscillation amplitude
e Makes the bubble more viscous
o More absorption
o Low scatter to attenuation ratio

o Church presented a non-linear theoretical model for
shell-encapsulated bubbles in 1995 which is the basis of
BubbleSim.

» Does not give information about the nonlinear stress-strain
relationship of the shell

o Nonlinear ad hoc model added exponential stress-strain
relationship for the shell




OUTLINE

o Introduction to Contrast Agent Imaging
e Applications
e Detection techniques
e Mechanical Index

o Bubble and Shell models

o BubbleSim simulation program
o Compromised model
e Simulation examples




COMPROMISED MODEL

o Bubble model

o Start from R-P model with damping term from Trilling
and Keller models

e Omit the correction terms of first-order in the Mach-
number

» Avoid the unphysical negative inertia and associated
numerical instability problem

o Is easy to implement using standard numerical software
packages

o Shell model

» Modeled by using Church’s visco-elastic model, with the
exponential stress-strain relationship proposed by ‘
Angelsen et al.




BUBBLE RESPONSE

o The particle radius a(t) is

a(t)=a,(1+x(1)), |x(r)|<1.

and radial oscillation
. 1 pilw) 0= w
A((ﬂ)_ﬂz—l—iﬂﬁpzwéai’ T g

is the Fourier Transform of x(t)

o At certain frequency, x(w) is proportional to pi(w)

o At fixed pi(w), x(w) is a bandpass function with
resonant frequency of (wo/2).

o 0 is the damping constant, represent the
attenuation of the sound




SCATTERING CROSS SECTION (SCS)

o SCS in the model

Q4
(Q2—1)*+ Q%%

os(a, ,w)=4ma’ .
alr

o At resonant, bubbles
give even more
scattering energy

difference of approx. 108
(= 100 million)
blood

Scattering cross-section

o Both damping constant
0 and normalized
frequency Q depend on I
the viscoelastic Hrequency
properties of the shell
(Gs and ,Lls)




BUBBLESIM INTERFACE

Parameter setup panel
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DEMO ...

o Low MI

o Resonance
» Linear resonate frequency:

@ __L \/1 (iz F126.5
27 2ma, Vp;\° Po Sa, |’

o High MI
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